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ABSTRACT

Commensurate transmission-line networks are designed in the time domain using state-space techniques with

no restrictions on the network topology, Computer-aided procedures are ueed to optimise the time domain

responses. Several examples are given of microwave networks designed using this technique.

Introduction

State-space techniques are used in this work to
analyze commensurate microwave networks of any tOpolo-

gy in the time domain. The reflection coefficient is
calculated and matched to the desired idsal function.

A computer-aided procedure calculates the values of
the circuit elements that minimise the difference
between the ideal and circuit responses. Conditions on
both the amplitude and phase responses of the network
can be transferred to the time domain and tha circuit
can be designed to meet these requirements together

with any other constraints imposed on the time domain
reeponse. Since the time response is a function of a
real variable t instead of the complex frequency

variable S, the computer-aided procedure is very

efficient compared with procedures nptimising the

responses in the frequency domain.

The Network Resoonse

Commensurate ne”tworks can be analyzed in the time
domain using state-space techniques I’I-2J. The state
and output equatione are given by

x[t + T] = A x(tl + B u[t] (la]

y[tl = c x[tl + D u[tl [’lb)

where x(t], u[t) and y(t) are the state, input and

output vectors respectively and T is the commensurate

delay on each lina, The matrices A, B, C and D are

derived [1-2] in terms of tha network topology and the

element values, With this method there are no restri-
ctions on the network topology and coupling between
the lines can be included.

The response h[tl for a unit impulse Input 6[t]
1s derived from (1] and is given by

m

h(tl = ~ c Aj-l B d(t - jT) + D d(t) (21
j=’1

The output could be choeen as the voltage drop vRfl[t]

across the generator resistance R and the matrices C
and D are derived accordingly. I: thie case vR1(tl

will be given by (2) and the reflection coefficient

’11
(t] in the time domain will be gxven by

Sqq(tl = d[tl- 2vrq[t) [3)

If tha output ie chosan as the voltage VR2 across the

load resistance R2 then the matricee C and O are

derived accordingly and VR2 will be given by [2). The

transfer scattering parameter SZl(tl in the time domain

will be given by
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‘1
‘2~Lt] = — ‘R2[t]

‘2

(41

The forms of equations (1) and [2] do not change by a
different choice of output; only the matrices C and D
will depend on that choice.

The above analysis gives a very general method of
calculating the time domain response of commensurate
networke of any topology.

Ideal Reeponse

The ideal response can be either of the scatter-

ing parameters Sq7[tl or S21[t). In this work we will

give examples of networks designed to approximate an

ideal reflection coefficient Slfl[tl. The form of

Sql(tl will be derived from the ideal return loss

function LR shown in Figure 1.

The ideal return loss LR is related to the ideal

reflection coefficient in the frequency domain S~q[jml

by

‘R = ln
(51

lS1~(jwl \

Since LR is a periodic function of frequency, it can

be expanded in a Fourier series [3

m

‘R =
so/2 + Z ar cos(2roT

~=q

For the ideal low-pass distributed

[61

filter resmnse

shown in Figure l(al, a. and ar are given by

a= 2AucT/lT
o

[7a)

a= 2Asin(2rcocT]/mr
r

(7bl

where A and o c are the specified return loss in the

pass band and the cut-off frequency respectively.
For the ideal band-pass response ehown in Figure lb,
a and a

0
r are given by

a = A(1 - 2WcT/Tr)
o

(8a)

a= - 2A sin(2rwcT1/mr
r

(8b)

The ideal minimum phase reflection coefficient can be
written as



s
11

where z
and

z] = exp

exp (sT 1

b =1
r

r!
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-2r
-ao/Z){~ + Z br z }

~=’1
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In the time domain S1l[t) is obtained through the

inverse Laplace transform of (9)

Slq[t) = exp (-ao/21d[t)
co

+ exp (-ao/21 X br d(t-2rT) [11)
r=q

Equation [11] gives the ideal reflection coefficient

in the time domain.

The computer-aided design procedure compares the
idQal response given by (11) with the actual circuit

response given by (3). The values of the circuit
elements are then adjusted to minimise the sum of the

squares of the errors between the two functions.

Examples

Several circuits have been designed using this

procedure; two examples are given below.

Example 1: The fifth order band-pass filter shown in
Figure 3a was designed to approximate the ideal
Sll[tl shown in Figure 3b. The two responses were

compared at the first 30 impulses. The resulting sum
of the squares of the errors was 0.006 after 21
iterations and 35 seconds of computer time. The
element valuee and the time and frequency responses
are shown in Figure 3.

Example 2: The seventh and nineth order interdigital
band-pass filters shown in Figure 4a were designed to

approximate the ideal S1l[t) shown in Figure 4b. The

number of iterations was 17 and 27 and the computer
times were 1.1. and 2.6 seconds respectively. The
resulting sum of the squares of the errors was 0.0003
and 0.0002 respectively. The element values and the
resulting frequency responses are given in Figure 4.

Conclusion

Time domain design offers an effective and
efficient method for designing microwave networks.

The derivation “of the state and output equations
using topological methods offers a general method of
calculating the time response with no restrictions on
the network topology.
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Figure 1: Ideal return-loss functions (a) low-pass (b) Band-pass
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Figure 31cI : Frequency response of band-pass filter
[Examle 21
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Figure 3 [al : Networks end element “.1”.s of ExmP1e 2
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